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Troesch’s problem, which arose in the investigation of the confinement of a plasma 
column by radiation pressure, is an inherently unstable two-point boundary value 
problem. This paper discusses how Troesch’s problem may be solved by a combination 
of methods, multipoint, continuation, and perturbation, although none of these methods 
by itself is sufficiently potent. 

1. INTRODUCTION 

Troesch’s problem arose in the investigation of the confinement of a plasma 
column by radiation pressure [lo]. In the version we shall study, it is the problem 
of solving the nonlinear ordinary differential equation 

j = n sinh ny, n > 1.0 (1) 

subject to the boundary conditions 

Y(O) = 0, y(1) = 1.0. 

The associated initial value problem has a pole approximately at 

(2) 

t = (l/4 WWW, 

a situation that makes the solution of (I), (2) by shooting methods very difficult. 
Even with an approximation quite close to the true value of the missing initial 
condition, j(O), it may be impossible to integrate (1) to the end of the interval [0, I]. 
For example, in the case IZ = 5 for which the correct initial condition is 
9(O) m 0.038, the reasonable guess j(O) = 0.055 gives a solution to (1) that has a 
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pole at t < 1.0. Numerical integration with j(0) = 0.055 will cause overflow well 
before t = 1.0 is reached. Troesch’s problem, due to its inherent instability, thus 
poses a severe test for any shooting method, and this severity increases with 
increasing n. 

In the present paper we show how a combination of shooting methods, which 
individually may not be sufficiently powerful, can be used to solve Troesch’s 
problem. It is to be expected that the combination of techniques, which has not 
received much attention in the literature (although Osborne [3] and Roberts and 
Shipman [9] have reported on a mixed strategy of multipoint and continuation 
techniques), will also be useful in solving other inherently unstable or numerically 
unstable two-point boundary-value problems. 

An interesting approach to the solution of Troesch’s problem by Monte Carlo 
methods described by Tsuda, Ichida, and Kiyono [Ill should be noted. 
However, these authors do not attempt a solution for n > 5.0, while, as we will 
show, successful solutions at least up to and including n = 10.0 can be obtained 
by our combination of methods. 

2. COMBINATION OF METHODS 

The methods to be combined are the perturbation technique [7], the multipoint 
or parallel shooting method [l, 2, 91, and the continuation method [4-61. In the 
perturbation technique, the right hand side of the set of ordinary differential 
equations (written in the standard form jr = f(y, t)) is partitioned into two parts, 
usually linear and nonlinear. A perturbation parameter l k is introduced as a 
multiplier of one of the parts, usually the nonlinear terms. Starting with l 0 = 0, 
a sequence of two-point boundary-value problems is formed and solved. For the 
SUCCessiVe problems Ek+l = Ek + de, , and the set of missing initial conditions 
found for the k-th problem is used as the initial trial set of values for the (k + 1)-st 
problem. When l lc = 1.0, the original problem will have been solved. 

The multipoint (parallel shooting) method treats the given two-point boundary 
value problem as if it were, in fact, a multipoint boundary value problem. This is 
done by first dividing the original interval [to, tf] into Q subintervals [tPP1 , t9], 
p = 1,2,..., Q with to = tr and solving the original system of N equations over the 
Q subintervals simultaneously (in parallel) as a system of two-point boundary 
value problems. If the dimensionality of the original system is JV, the dimensionality 
of the system resulting after the introduction of the multipoints is NQ. The N 
boundary conditions of the original system are supplemented by requiring that the 
solution of the multipoint system at the endpoint of the p-th interval be the same 
as the solution at the initial point of the (p + I)-st interval; that is, continuity of 
the solution of the original system is invoked. Since there are Q - 1 interior 
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multipoints, an additional (Q - 1)N boundary conditions are introduced making 
a total of N + (Q - l)N = NQ, precisely the necessary number. In exchange for 
the increased dimensionality, the multipoint method provides greater numerical 
stability and smaller error growth, as pointed out in [l]. 

The continuation technique is a method in which a parameter is varied con- 
tinuously in some way to effect the solution [4-51. In this sense, perturbation is a 
variant of continuation. The continuation technique applied here is a shooting 
method where the interval over which the boundary value problem is solved is 
considered as a parameter. Instead of attempting to solve the problem outright 
over the original interval [to , tY], the given problem is solved over a sequence of 
intervals [to, tP], where t, < t,+l and t, < t, . For each problem of the sequence 
the prescribed boundary conditions of the original problem at tf are taken as the 
boundary conditions at t,, and the missing initial conditions found for the boundary 
value problem over the interval [to , p t ] are used as the trial initial conditions for 
the boundary-value problem over the interval [to , t,+J. The process is terminated 
when t, = tf , at which point the original problem will have been solved . 

Each of these three modified shooting techniques (perturbation, multipoint 
shooting, and continuation) has proven to be useful in the solution of numerically 
sensitive boundary value problems; that is, problems in which small changes in the 
initial conditions can precipitate numerical integration difficulties such as machine 
overflow or excessive error growth. By itself, however, none of these three was 
sufficiently powerful to solve Troesch’s problem. In the next section we show how a 
combination of the methods can be used to solve Troesch’s problem. This approach 
should be equally useful for other sensitive two-point boundary value problems. 

3. SOLUTION OF TROESCH'S PROBLEM 

To solve Troesch’s problem for a range of values of n we first converted the 
single second order differential Eq. (1) into an equivalent system of two first order 
equations by the standard substitutions y = y, , j = yz . The boundary value 
problem (l), (2) then takes the form 

$1 = Yz 9 (3) 

j, = n sinh ny, , (4) 

Y,(O) = 07 Y,(l) = 1. (5) 

This preliminary transformation is a matter of convenience since our computer 
programs for solving two point boundary value problems assume that the system 
of equations is written in the standard form 9 = f(y, t), where y and f are N x 1 
vectors. 
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We started our attack on Troesch’s problem by solving (3)-(5) for n = 5 over the 
interval [O.O, 1.01 using the multipoint method without continuation or perturbation. 
The selection of multipoints which ultimately led to the solution was obtained by 
trying to solve the problem successively with 2, 3, 6, and finally 9 multipoints. 
Each problem (except for the first) used the profiles from the previous problem as 
the source of the trial initial conditions at the multipoints. The multipoints them- 
selves were concentrated near the end point t = 1.0, the region where overflow 
occurred. 

TABLE Ia 

j; = 5 sinh 5y 

tn Y:“‘(t) 

2 multipoints 

Ylw) y:“‘(t) Y:‘(t) 

0.00 0.0 l.OOO(lO-8) 0.0 1.mlo-5) 
0.25 3.2O37O84(1O-9) 1.8883734(1O-s) 
0.50 1.2O99559(1O-9) 6.1318909(10-8) 
0.75 4.2493344(10-“) 2.1270193(10-‘) 
1.00 1.0 1.4838680(10-‘) 7.4200137(10-‘) 

TABLE Ib 

3 multipoints 

0.00 
0.25 
0.50 
0.50 
0.75 
1.00 

0.0 

1.209(10-8) 

1.0 

1.000(10-8) 

6.131(1O-8) 

0.0 1.0000000(10-8) 
3.2037084(10+‘) 1.8883734(10+ 
1.2099595(10-*) 6.1318909(10-*) 
1.2O9OOOO(10-8) 6.1310000(10-8) 
4.2472370(10-*) 2.1260826(10-‘) 
1.4831718(10-‘) 7.4165650(10-‘) 

TABLE Ic 

6 multipoints 

0.00 
0.50 
0.50 
0.75 
0.75 
0.80 
0.80 
0.90 
0.90 
0.95 
1.00 

0.0 l.OOO(lO-8) 0.0 1.0000000(10-B) 
1.21OO4O7(1O-s) 6.1322887(1O-8) 

1.209(10-8) 6.131(1O-8) 1.2O9OOOO(10-8) 6.1310000(10-8) 
4.2473774(10-*) 2.1261526(10-‘) 

4.247(10-*) 2.126(10-‘) 4.247000C(10-8) 2.1260000(10-‘) 

4.247(1O-8) 2.126(10-‘) 4247OOBO(10-8) 2.1260000(10-7) 
7.0047245(10-*) 3.5038786(10-‘) 

4.247(1O-8) 2.126(10-‘) 4.247OOBO(10-*) 2.1260000(10-7) 
5.4545189(10-*) 2.7292065(10-‘) 

1.0 7.0047245(10-8) 3.5038786(10-‘) 
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To be specific, for IZ = 5 the choice of multipoints was developed as follows. 
For two multipoints at t = 0.0 and 1.0, i.e., the original and final points, and the 
trial initial conditions y:‘)(O) = 0.0 and y?‘(O) = lo-* (see columns 2 and 3 of 
Table Ia) a solution of the boundary value problem was attempted by the method 
of variational equations [S, 91. The first iteration of the method yielded the values 
listed in columns 4 and 5 in Table Ia. However, the next iteration resulted in 
machine overflow. At this stage a multipoint was added at t = 0.5, and trial initial 
values for the resulting three-point boundary value problem obtained from columns 
4 and 5 of Table la. With these values a solution was once more attempted by the 
method of variational equations, the first iteration yielding the profiles listed in 
columns 4 and 5 of Table Ib, while the second iteration again resulted in overflow. 
This process was repeated for six and finally nine multipoints, when a successful 
solution was obtained. Tables Ia, lb, Ic and II show the location of the multipoints 
and the trial initial conditions at the multipoints. Columns 4 and 5 of Table Ic 
supplied the trial initial values at the multipoints for the nine multipoint problem 
exhibited in Table 11, which also gives the solution for the tenth iteration of the 
method of variational equations for the problem n = 5. For the solutions at the 

TABLE II 

ji = 5 sinh Sy 

t” Y:"'tt>b YTV) y:‘“‘(t>” y:‘O’(t)C 

0.00 0.0 1.000(10-8) 0.0 3.7766775(1O-2) 
0.50 4.5742875(1OW) 2.3230373(10-l) 
0.50 1.2O9(1O-8) 6.131(10-*) 4.5819097(10-2) 2.3354383(10-l) 
0.75 1.6322359(10-l) 8.4004495(10-1) 
0.75 4.247(1O-8) 2.126(10-‘) 1.6656719(1OF) 8.9852417(10-‘) 
0.80 2.1803689(10-l) 1.1762980 
0.80 4.247(1O-8) 2.126(10-‘) 2.1937680(10-1) 1.2386338 
0.90 3.8832871(10-l) 2.3063291 
0.90 4.247(10-*) 2.126(10-‘) 4.0646319(10-l) 2.8455168 
0.93 5.0173755(10-l) 3.5643220 
0.93 5.454(10-S) 2.729(10-‘) 5.0680480(10-1) 3.9419232 
0.95 5.9287259(10-l) 4.7211609 
0.95 5.454(10-S) 2.729(10-‘) 5.9635871(10-‘) 5.0963883 
0.98 7.7912400(10-1) 7.4436956 
0.98 5.454(10-S) 2.729(10-‘) 7.7099069(10-‘) 8.3569161 
1.00 1.000 9.9447534(10-l) 1 .2730249(101) 

Q t=, p = 1, 2 = multipoints. ,... 
b y!*‘(t) = value of y<(t) for the k-th iteration. 
c Two values of yp’ are given at each t, ; the first is the result of the integration from tD-l 

to t,, the second is the initial value for the interval [t,, , t,+J. 
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multipoints more places of agreement can be achieved by more iterations of the 
process. As shown in Tables III-V, the multipoint process can give 6 to 7 decimal 
places of agreement at the multipoints. 

TABLE III 

ji = 6 sinh 6y 

t, Y:“‘W YlP’W r:‘“‘(t) Y:‘O’@) 

0.00 
0.50 
0.50 
0.75 
0.75 
0.80 
0.80 
0.90 
0.90 
0.93 
0.93 
0.95 
0.95 
0.98 
0.98 
1.00 

0.0 

1.665(10-l) 

2.193(10-l) 

4.064(10-l) 

5.068(10-l) 

5.963(10-l) 

7.709(10-l) 
1.000 

3.770(10-Z) 

2.335(10-l) 

8.985(10-l) 

1.238 

2.845 

3.941 

5.096 

8.356 

0.0 1.7966O41(1O-2) 
3.OO15963(1O-2) 1.8123198(10-1) 
2.9999733(1O-2) 1.8109896(10-‘) 
1.3653736(10-l) 8.4250957(10-‘) 
1.3652211(10-‘) 8.4243492(10-l) 
1.8647773(10-l) 1.1782968 
1.8647716(10-‘) 1.1782781 
3.6336876(10-l) 2.6384734 
3.6336874(10-l) 2.6385112 
4.5669138(10-‘) 3.6816420 
4.5669105(10-l) 3.6816205 
5.4124245(10-l) 4.8749013 
5.4124227(10-l) 4.8748919 
7.3775052(10-l) 9.0372454 
7.3775065(10-l) 9.0373446 
1.0000016(10-1) 2.0080680(10’) 

TABLE IV 
y  = (n/2)(F - e-“) 

n = 10, E = 0.6 

0.00 
0.50 
0.50 
0.75 
0.75 
0.80 
0.80 
0.85 
0.85 
0.90 
0.90 
0.95 
0.95 
1.00 

2.198(10-l) 

1 .O72(1O-2) 

1.O72(1O-2) 
1.ooo 

1.645(10-3) 0.0 1.825O442(1O-3) 
8.8807916(10-“) 7.9001321(10-2) 

1.579(10-l) 8.8807920(10-3) 7.9OO1329(1O-2) 
7.989847O(1O-2) 6.8915826(10-l) 

1.657(10-l) 7.9898484(1O-2) 6.8915840(10-‘) 
1.2279130(10-‘) 1.0526746 

2.718(10-l) 1.2279129(10-l) 1.0526742 
1.8865048(10-1) 1.6291696 

9.291(10-l) 1.8865045(10-‘) 1.6291677 
2.9292472(10-l) 2.6552716 

1.287(10’) 2.9292454(10-l) 2.6552615 
4.7637234(10-l) 5.1374984 

1.287(10’) 4.7637110(10-1) 5.1374159 
1.0000603 2.6017645(10’) 
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TABLE V 

j = (n/2)(e”Y - e-y 
II = 10, E = 1.0 

t Y:“‘(t) Y:‘(t) Y:‘“‘(t) y:‘“‘(t) 

0.00 
0.10 
0.25 
0.50 
0.50 
0.60 
0.75 
0.75 
0.80 
0.80 
0.85 
0.85 
0.90 
0.90 
0.95 
0.95 
1.00 

0.0 

3.986(1OV) 

6.494(1O-2) 

1.063(10-1) 

1.775(10-l) 

3.159(10-l) 
1.000 

5.210(10-y 

3.4O6(1O-2) 

3.882(10-l) 

6.361(10-l) 

1.062 

1.883 

4.124 

0.0 3.6106045(10-*) 
4.2431824(1O-6) 5.5714508(10-‘) 
2.1844855(10-3 2.2141236(10-3 
2.6792142(1O-8) 2.6795376(10-3 
2.6792142(1O-s) 2.6795376(1O-2) 
7.2838355(W5) 7.2855353(1OF) 
3.2713168(10-2) 3.2859253(10-l) 
3.2713168(1O-2) 3.2859252(10-l) 
5.4143217(HF) 5.4807001(10-‘) 
5.4143216(1O-2) 5.4806997(10-‘) 
9.0225491(10-2) 9.3317237(10-1) 
9.O225488(1O-2) 9.3317219(10-1) 
1.5338461(10-‘) I .6886960 
1.5338460(10-‘) 1.6886949 
2.7910684(10-l) 3.7895767 
2.7910665(10-l) 3.7895623 
1.0002667 2.5273774(102) 

We next solved (3)-(5) for n = 6 as a nine-multipoint problem by the method of 
variational equations, using as the source of the trial initial values at the multi- 
points the solution for n = 5 in Table II. Table III lists the trial initial values and 
the solution at the tenth iteration of the method of variational equations for n = 6. 

We then attempted to solve (3)-(5) for IZ = 10 as a nine multipoint problem, 
employing as a source of the trial initial values at the multipoints the solution for 
the problem for n = 6, but overflow occurred in the first iteration of the method of 
variational equations. 

Since a combination of multipoint and continuation methods had been successful 
in the problems attacked in [3] and [9], we next tried this approach. We were able 
to solve the problem for n = 10 over the intervals [O.O, 0.901 and [O.O, 0.951, but 
we could not solve the problem over the interval [O.O, 1 .O]. 

At this point we introduced a form of the perturbation scheme which we now 
describe. Ordinarily in applying the perturbation technique one attempts to 
partition the right hand side of the system of differential equations into linear and 
nonlinear parts. However, Troesch’s equation does not lend itself to this approach. 
Instead, we replaced sinh ny by its definition 

sinh ny = 4(enY - eTny) 
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and introduced the perturbation parameter Ed , 0 < Ek < 1, into the exponent of 
eny, so that the differential equations now appear as 

3, = Yz 3 (6) 

j, = 4 (e”n”’ - e-y. (7) 

This was done in the expectation, borne out by subsequent analysis, that for 
Ek < 1.0, the solution of (6), (7) would grow at a slower rate than the solution of 
(3), (4), with the result that the troublesome pole of the solution would be moved 
out beyond the interval of interest [O.O, 1.01. 

Setting n = 10, and E,, = 0.6, and taking the trial missing initial conditions and 
the multipoints from the profiles of the seventh iteration of the solution of 
ji = 10 sinh 10~ over the interval [O.O, 0.951, we obtained the results presented in 
Table IV. Then, in succession, taking the trial missing initial conditions and the 
multipoints from the final iteration of the previous problem we solved (6), (7) 
(with the boundary conditions (5)), for n = 10 and e1 = 0.7, Ed = 0.8, l s = 0.9, 
and Ed = 1.0. Thus we obtained a successful solution to Troesch’s problem for 
12 = 10, as exhibited in Table V. 

As a rough check, the implicit solution possessed by Troesch’s problem 

t= 
s 

’ dv/1/2 cash nv + C 
0 

was computed by Romberg integration. In Eq. (8), the constant C, which is 
bounded from below by -2, is evaluated from the final condition y(l) = 1.0. 

TABLE VI 

Romberg Integration of I = fi dv/1/2 cash nv + C 
n = 10, C = -1.9999998716 

t Y 

0.00 0.0 

0.10 4.2084926(10-5) 
0.20 1.3086482(10-“) 
0.30 3.5781050(10d) 
0.40 9.7665595(10-3 
0.50 2.5138142(10-“) 
0.60 7.4442756(10-a) 
0.70 1.9371129(10-a) 
0.80 5.3518334(10-2) 
0.90 1.6076199(10-‘) 
1.00 9.9949024(10-‘) 
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Owing to the nature of the problem, the numerical quadrature will present some 
difficulties too, since the integrand has a pole at t = 0 when C = -2. In particular, 
as n increases, the evaluation of C becomes more sensitive. For example for 
n = 5, C = -1.9979068951, while for n = 10, C = -1.9999998716. The results 
of the Romberg integration are listed in Table VI. 

4. DISCUSSION 

The use of a combination of techniques provided us with a great deal of flexibility 
in our attack on Troesch’s problem. While our general approach was the systematic 
deformation of an initial “approximate” solution (which could be, at the start of 
the process, very far indeed from the true solution), our choice of options at 
various stages of this process was by no means unique. In particular, different 
choices could have been made in (1) the selection of the integration formula, (2) 
the development of the solution profiles, (3) the selection of the multipoints, (4) 
incrementing n, and (5) the partitioning scheme. These choices will now be justified 
in a brief discussion, which should also serve to give further insight into the 
combination of techniques and its potential advantages in dealing with sensitive 
problems. 

(1) Integration formula. All our computations were executed in double precision 
arithmetic using a four point Runge-Kutta integration method, in order to use 
existing programs. More efficient formulas, such as Hamming’s modification of 
Milne’s formula, can be expected to give as good, if not better, results. 

(2) Development of the profiles. When the second iteration of the method of 
variational equations applied to the two-point boundary value problem for n = 5 
resulted in machine overflow, the authors turned to the multipoint method. An 
alternative choice would have been to try different values for the missing initial 
condition with the hope that one could be found which would lead to a successful 
solution. However, there is, in general, no systematic method of varying the trial 
initial conditions until a satisfactory set is found. Experience with the multipoint 
method, on the other hand, has resulted in rules-of-thumb which in practice enable 
a systematic attack on the problem, as the next paragraph indicates. 

(3) Multipoint selection. The analyst can choose a different number of 
multipoints, different locations for the multipoints, and different values of the 
functions at the multipoints. To simplify the data input the authors have used the 
identical value of the function at several values of the multipoints in Table lc 
and Table II for example. 

As pointed out in [9], the authors have stated that the determination of the 
number of multipoints, the location of the multipoints, and the values of the 
functions at the multipoints is a matter of experimentation. The location of the 



SOLUTION OF TROESCH’S TWO-POINT BOUNDARY VALUE PROBLEM 241 

multipoints is more important than the number of multipoints. In particular, the 
multipoints should be concentrated near those values of the independent variable 
where numerical problems occur. 

(4) Incrementing n. The authors solved Troesch’s problem for n = 5 and 6, 
and then to accelerate the process, attempted to solve the problem for 12 = 10. 
Successful solution for this last problem then exploited the continuation and 
perturbation techniques. An alternative strategy would have been to continue to 
increment IZ by smaller amounts, say 1 .O or 0.5. 

(5) Partitioning scheme. In applying the perturbation scheme to the problem 
for IZ = 10, the authors employed a partitioning scheme different from that 
described in [7], since the form of the differential equation did not lend itself to 
the partitioning of the right hand side into linear and nonlinear terms. The manner 
of introducing the perturbation parameter E remains something of an art, although 
the authors attempt to systematize the process in a forthcoming paper. The choice 
of the de increment is another option which can be exericsed. 

With all the flexibility provided by the combination of techniques, we believe 
that other inherently unstable or numerically unstable two-point boundary value 
problems can be successfully attacked by this approach. 

REFERENCES 

1. H. B. KELLER, “Numerical Methods for Two-Point Boundary Value Problems,” Blaisdell, 
Waltham, Mass., 1968. 

2. D. D. MORRISON, J. D. RILEY, AND J. F. ZANCANARO, Multiple shooting methods for two- 
point boundary value problems, Comm. ACM 5 (1962), 613-614. 

3. M. R. OSBORNE, On shooting methods for boundary value problems, J. Math. Anal Appl. 
27 (1969), 417433. 

4. S. M. ROBERTS AND J. S. SHIPMAN, Continuation in shooting methods for two-point boundary 
value problems, J. Math. Anal Appl. 18 (1967), 45-58. 

5. S. M. ROBERTS AND J. S. SHIPMAN, Justification for the continuation method in two-point 
boundary value problems, J. Math. Anal. Appl. 21 (1968), 23-30. 

6. S. M. ROBERTS, J. S. SHIPMAN, AND C. V. ROTH, Continuation in quasilinearization, 1. Opt. 
Theory Appl. 2 (1968), 164-178. 

7. S. M. ROBERTS, J. S. SHIPMAN, AND W. ELLIS, A perturbation technique for non-linear two- 
point boundary value problems, SIAM J. Num. Anal. 6 (1969), 347-358. 

8. S. M. ROBERTS AND J. S. SHIPMAN, “Two Point Boundary Value Problems: Shooting Methods,” 
American Elsevier, New York, 1972. 

9. S. M. ROBERTS AND J. S. SHIPMAN, Multipoint solution of two-point boundary value problems, 
J. Opt. Theory Appl. 7 (1971), 301-318. 

10. B. A. TROESCH, “Intrinsic Difficulties in the Numerical Solution of a Boundary Value 
Problem,” Internal Report NN-142, Jan. 29, 1960, TRW, Inc., Redondo Beach, Cal. 

11. T. TSUDA, K. ICH~DA, AND T. KIYONO, Monte Carlo path-integral calculations for two-point 
boundary-value problems, Numer. Math. 10 (1967), 110-I 16. 


